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Executive summary

This white paper - written by a team of experts from Radboud University, University of Groningen,
Delft University of Technology, Eindhoven University of Technology, University of Twente, AMOLF,
CWI and SURF - provides insight in the necessity and potential of neuromorphic computing for the
Netherlands. Our aim is to create synergy between the expertise in both the public and the private
parties in The Netherlands, and to put neuromorphic computing on the map as a key technology for
energy-efficient computing.

Neuromorphic computing is a paradigm that draws inspiration from the structure and functioning
of the human brain, in particular the co-location of data storage and data processing. This strongly
reduces the amount of data transfer and therefore significantly increases the speed of computing
while simultaneously reducing its energy consumption. It can, therefore, play a key role in data
analysis in many fields. In addition, the development of expertise and neuromorphic data processing
capabilities would limit the need to transfer privacy-sensitive data and would improve digital
sovereignty.

Innovation in neuromorphic computing is dependent on developments in six key areas:
Materials

Devices

Circuit Design

Hardware Architecture

Algorithms

o v A wnN =

Applications

In the Netherlands, there is a strong and diverse academic community and multiple start-ups
covering those areas of expertise. To consolidate and expand the already strong Dutch position in
neuromorphic computing, it will be crucial to define a world-wide unique flagship on neuromorphic
computing. This implies a transformation to a more concerted research effort and a cohesive
community focused on a common goal. Therefore, our ambition beyond the white paper is to create
a coalition ‘Neuromorphic computing NL' and develop a roadmap for a collaborative effort towards
future-proof energy-efficient computing.
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Why do we need neuromorphic computing?

Information technology (IT) forms the backbone of the digital and knowledge-driven economy in
the Netherlands. With the evolving digitalization, expansion of social media and artificial
intelligence, this dependence has been rapidly growing to unsustainable levels. As a result, major
problems emerge due to the associated energy costs and climate impact, which are particularly
pressing in the Netherlands considering the limited physical space and power grid capacity available
for data centers [Wo0022]. Moreover, the evolving digitalization and its rapid expansion results in
privacy and security issues, and leads to increasingly reliance on IT-expertise outside the
Netherlands and even outside the EU, limiting sovereignty.

Neuromorphic computing has enormous potential for very fast and extremely energy-efficient data
processing. It can, therefore, play a key role in data analysis in many fields, like for example in
healthcare, sustainable food supply for the expanding world population, failure analysis of the
power grid as well as for growth in key parts of the Dutch economy, such as for diagnosis of
maintenance tasks in logistics. At the same time, neuromorphic computing allows applications such
as evaluations of high-dimensional problems or cryptography that are simply impossible or too time
and power consuming with standard approaches. In addition, the development of expertise and
neuromorphic data processing capabilities would limit the need to transfer privacy-sensitive data
and improves digital sovereignty.

What is neuromorphic computing?

Neuromorphic computing is a paradigm that draws inspiration from the structure and functioning
of the human brain, in particular its small power consumption (~20 Watt), which is only a tiny bit as
compared to the vast 50 million Watt consumed by supercomputers. The energy-efficiency of the
human brain is enabled by doing data storage and data processing literally at the same place. This
strongly reduces the amount of data transfer between spatially separated storage and processing
components present in current digital hardware and, therefore, allows for massively parallel
calculations. Hence, computations are completed very fast and data processing becomes extremely
energy-efficient. The main goal of neuromorphic computing is to realize this potential for fast and
energy-efficient information processing in non-biological yet brain-inspired computers.
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Neuromorphic computing includes several different aspects as illustrated in Figure 1 and briefly
explained below:
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Figure 1: Overview of the key areas in neuromorphic computing (center ring) and distribution of expertise over the universities,
knowledge institutions and national e-infrastructure service providers in NL. In applications, the potential list of companies is much
larger, it is currently limited to those that had been consulted during compilation of the whitepaper. Outside applications, relevant
startups based in NL are listed.

For neuromorphic computing, different materials are needed than those used for the transistors of
digital computers. For example, materials with adaptive properties to mimic the synapses of the
human brain. Devices are components with a given functionality. This can be a switch, a memory
element and also a sensor or artificial neuron. Multiple devices have to be integrated for which
neuromorphic circuit design is needed. Moreover, new hardware architectures have to be
developed to realize a computing chip, featuring either fully neuromorphic or a combination of
digital and neuromorphic circuits.

Algorithms of digital computers define the manner in which the computer is programmed and
interacts with the environment. For digital computers there is a strict separation between software
algorithms and hardware. For neuromorphic computing this seperation is less clear and they are
often developed and designed together. Moreover, the way neuromorphic computers are
programmed is different. They are essentially learning machines, just as the human brain, and they
become better and better by training them with data.

Applications also play a special role in neuromorphic computing. It is not expected that
neuromorphic computing will directly replace existing digital computers. It will rather have
advantages for specific tasks that are highly demanding in terms of the amount of data, response
time or the available energy. Especially tasks that involve pattern recognition and classification are
very suited for neuromorphic computing. For example, fraud detection for credit card transactions
in mobile payment terminals and image analysis by robots and on drones, with potentially huge
business opportunities in, for example, health, logistics and food production.
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Specific tasks at data centers can benefit from neuromorphic computing as well, since the
dependence of the computational cost on the complexity of the problem changes fundamentally
by performing all required computations simultaneously in a neuromorphic hardware. As a result,
certain large computations that are completely impossible on existing digital hardware, may
become feasible with neuromorphic computing. This has applications in, for example, cryptography
and for evaluations of high-dimensional problems.

What is the current position of the Netherlands?

The Netherlands offers a fertile ground for fostering significant societal and economic activity based
on neuromorphic technologies [Con24]. The country boasts unique boundary conditions
(Amsterdam Internet exchange point, strong datacenter industry) and an excellent ecosystem to
foster technology transfer (TNO, IMEC) with several startups already entering the market (e.g.
Innatera, AxeleraAl, GrAl Matter, IMChip, HourSec). Moreover, there is a strong and diverse academic
community with several key actors (including CogniGron at the University of Groningen,
MESA+/BRAINS at University of Twente, Radboud Neuromorphic Computing Initiative in Nijmegen,
Hendrik Casimir and Artificial Intelligence Systems Institutes Eindhoven, Faculty of EEMCS at TU
Delft, CWI, and AMOLF), which is key to sustain long-term innovation. These are also involved in a
first collaborative national program, NL-ECO, and the collaborative academic platform Mission 10-X,
that aim at energy-efficient computing and in which neuromorphic computing plays a key role. The
specific distribution of expertise is shown in Figure 1 above. Furthermore, a summary of the key
aspect of neuromorphic computing is provided in the appendices, in which leading scientists from
Dutch research institutions describe the state-of-the-art and new developments.

Participants of the first Dutch neuromorphic computing ecosystem meeting at IMEC Eindhoven in June 2024.




What is the international neuromorphic computing landscape?

Many countries are currently investing in neuro-
morphic computing, both at fundamental and
more applied levels [Meh22]. Key players in Europe
are Switzerland (Institute for Neuroinformatics);
Spain (IMS-CSIC); Germany (Aachen (NeuroSys
[Lem23]), Juelich (Julich Neuromorphic Compu-
ting Alliance (JUNCA)), Frankfurt (IHP-Microelec-
tronics), Dresden (SpiNNAker 2, NAMLAB), Kiel
(Neurotronics) and Muenster (Hybrain)); UK (Man-
chester, UCL, Cambridge [cam24]); and France
(CEA-LETI, CNRS). In 2024, neuromorphic compu-
ting systems made their debut in the international
high-performance computing landscape outside
the EU. The Australian International Center for
Neuromorphic Systems has announced Deep South, the world’s largest neuromorphic
supercomputer capable of 228 trillion synaptic operations per second. Furthermore, Japan
(RIKEN-CCS) is exploring neuromorphic computing and in USA Intel has released Hala Point to utilize
sparse connectivity and event activity, and major programs run at IBM (HERMES core, TrueNorth and
Northpole chips), Stanford (Brains-in-Silicon) and Sandia National Labs.

What is the next step for neuromorphic computing in the Netherlands?

To consolidate and expand the already strong Dutch position in neuromorphic computing, it will be
crucial to define a world-wide unique flagship on neuromorphic computing. This implies a
transformation to a more concerted research effort and cohesive community focused on a common
goal. To realize this goal we have to leverage the existing key expertise in neuromorphic computing
and enhance connections between different levels of technological readiness. Simultaneously, such
a common goal should benefit from already existing coalitions in semiconductors and emerging
technologies like quantum, artificial intelligence and photonics (see info boxes) and conceptualize a
technological integration perspective in which neuromorphic and other technologies can
collaborate to address common challenges.

We recognize the recommendations of the survey by the Topsector ICT [con24] and emphasize that
this whitepaper is a first important step to gather the full community in NL. To further develop a joint
roadmap, we propose to form a coalition with all relevant parties and in close collaboration with the
Topsector ICT and TNO formulate alignment with the National Technology Strategy. In addition, to
strengthen the R&D position, we stress the importance of stable research funding and sustainable
business climate for startup companies. Finally, valorization will be greatly accelerated by realizing
publicly accessible neuromorphic infrastructure for testing and benchmarking the most promising
applications, both in scientific and in societal and industrial applications.
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ALIGNMENT WITH COMPLIMENTARY INIATIVES




Appendix 1: Key aspects of neuromorphic computing in the Netherlands

This appendix provides a summary of the key aspects of Neuromorphic Computing listed in Figure 1,
featuring Materials, Devices, Circuits, Architectures, Algorithms and Applications. In addition, an
example of optical neuromorphic computing is provided, exemplifying the link between
neuromorphic computing and photonics.

Further improvements within neuromorphic computing are feasible by addressing current limits
stemming from scaling, reliance on external computing, and energy efficiency. Intelligent matter,
capable of sensing, actuation, adaptation, and learning, is ideal for distributed, integrated information
processing like in biological systems. It surpasses the memristive paradigm (see devices below) by
embracing material complexity for comprehensive in-materia computing. This advancement is
crucial for neuromorphic computing due to its parallelism and adaptivity, mimicking brain-like
processes and boosting efficiency [Kas21]. Intelligent matter can scale effectively, supporting larger
networks while maintaining low power consumption. Developing local, physically realizable learning
rules [Jae23] is essential, addressing bottlenecks and driving the evolution of neuromorphic systems.
Intelligent matter will be a key enabler of future neuromorphic systems.

Intelligent matter refers to a diverse class of complex material systems for information processing
exploiting the intrinsic, often strongly nonlinear, physics or chemistry of materials. This is based on the
bottom-up and distributive design of materials which themselves inherently exhibit the necessary
computational behavior. This includes materials such as semiconductors, soft matter, metamaterials,
and optical systems hosting light-matter interactions. Research has shown the integration of
processing and memory down to the level of individual atoms [Kir21], as well as the ability to
efficiently perform machine-learning tasks in a material [Che20]. There is also significant progress in
the development of local learning rules, which are realizable in these physical systems. All these
developments link to improving the energy efficiency of brain-like computations by providing new
hardware solutions for neuromorphic computing beyond the memristive paradigm.

The challenges and opportunities in computing in intelligent matter are based on exploiting the full
materials properties themselves for computational functionality. This is largely based on linking
material platforms and techniques from various fields of research, with concepts in neuroscience,
computer science and artificial intelligence and supported by key experts from RU, UT, RUG, UU and
AMOLF. The opportunities are to create intrinsic self-learning and ultimately autonomous
functionality in materials, without the reliance on external computing or software. These ideas are
linked to creating integrated neurons and synapses in material systems, and developing physically
realizable learning rules, as well as developing computationally specific functionality that exploits the
energy efficiency and other advantages of the given material platforms.

Devices - Memristors

Efficient massively parallel information processing requires basic computer elements that can provide
adaptable connections in the form of variable resistances. If these resistances can be stored after the
power is turned off, both information processing and storage can be performed at the same location.
This in-memory computing avoids the data transfer that accounts for most of the energy
consumption in data centers. Devices presenting these features are known as memory resistors
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(memristors) or memristive devices [Str08, Was09, Pre15, Bur17,Kam24]. They can be miniaturized as
much as transistors in current computers and can be fabricated in existing chip fabs.

Driven by the computing demands of the Al revolution and the associated interest of industry (HP
labs, IBM research, IMEC), various memristive devices have been realized at Dutch and foreign labs
[Cai19]. Features that are sought in memristors are: wide range of adaptable resistance, high speed,
long retention, low operation energy, high endurance and high reproducibility. The diversity in
complex material processes (magnetic, electric, structural, and/or chemical) underlying memristive
behavior unites materials scientists with different backgrounds. The further involvement of device
engineers, computer scientists and Al experts forms a thriving scientific landscape. However, the ideal
material has not been found yet.

In search of the ideal memristor predictability is a key issue. Materials displaying both permanent
resistive memory and adaptability often rely on the interplay between physical phenomena, whose
combined effects are challenging to control. In times when control at the atomic scale is
commonplace, the next materials frontier lies on harnessing that complexity. The need to explore
new materials can be challenging in industrial settings and is leading to exciting new synergies
between academic and industrial labs, supported by key experts from UT, RUG, RU, UU, TUE and TUD
as well as by IMChip. Moreover, memristors need to be co-designed as part of novel computer
architectures and programmed in ways that are very different from those of digital computers.

Existing digital computing technology has been successfully used to build neuromorphic circuits that
mimic the fundamental dynamic properties of their biological counterparts, such as neurons and
synapses, with a high degree of precision, reliability, and detail. These systems are particularly suited
for the implementation of specific sensory-motor/decision mappings or functionalities, thus paving
the way for the construction of neuromorphic behaving agents and edge computing systems.
Furthermore, they are particularly suitable for building efficient brain-machine interfaces.

Current research spans from realizing neuromorphic circuits for bio-inspired synaptic-plasticity
circuits to neuromorphic circuits capable of integrating emerging technologies and neuromorphic
devices [lel19, Var22] in fully-fledged computing architectures. So far, neuromorphic circuits have
seamlessly integrated into sensory-processing architectures, addressing low power, low latency, and
reduced data rates [Yao24]. Additionally, various neuromorphic hardware now support doing
calculations with networks of artificial spiking neurons, including BrainScale-2 [Peh22], SpiNNaker
[FB20], NeuroGrid [Ben14], TrueNorth [Ako15], Tianjic [Den20], Loihi [Dav18], ODIN [Fre19], PRIME
[Chi16], DYNAP-SE2 [Ric24], and pBrain [Stu21]. These systems emphasize power efficiency by
embracing brain-inspired computing principles via event-based computation and co-location of
memory and processing.

Recent Al achievements pose two key challenges: the increasing computing power needed for Al
models and the memory bandwidth mismatch, known as the von Neumann bottleneck. Researchers
explore neuromorphic circuit designs to tackle these challenges. This approach, however, comes with
one drawback, namely, the cost and reduced scalability of fully custom designed neuromorphic
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circuits. To counter this, a parallel route supported by key experts at RUG, TUD, TU and Innatera
explores the integration of these systems with conventional computing machines. In other words, all
the levels of the computing stack should be co-engineered with neuromorphic circuits to become
usable for real-world applications.

Brains are not only extremely energy efficient and able to perform complex tasks, but also exhibit
remarkable degrees of resilience. There are many unique brain features that enable this: fused
computation-and-memory, enormous parallelism, analog event-driven processing, and fault
tolerance. Inspired by at least some of these features, computer engineers are building revolutionary
computing architectures to achieve extreme energy efficiency and adaptivity that can address many
societal challenges related to computing “at the edge’, i.e. very close to the sensors that produce the
data.

Two main directions that can be seen as the state of the art: i) bringing computing in memory (or
close), and ii) ultimate customization of reconfigurable hardware resources. On the former, many
ongoing projects in academia and industry exist that fall into the two major classes: Computing near
Memory and Computing in Memory (data stays in the memory while being processed). The state of
the art explores both traditional technologies as well as emerging device technologies to realize such
architectures.

Emerging brain-inspired adaptive hardware architectures face several challenges that need solutions
to realize their full potential, including: a) energy efficiency versus accuracy, b) manufacturing
variability and technology non-idealities, c) scalability, d) models of computing and online learning,
e) programming and execution models, f) design tools and methods, g) resilience, h) self-healing, i)
standards and interoperability. These challenges are addressed by both academic experts (TUD, TUE)
and startups (AxelaraAl, HourSec).

Neuromorphic Algorithms

Once novel materials are available for building brain-like neural systems, ways to ‘program’ them are
needed. However, one cannot just type program instructions into a neural network to solve task A or
B. Neural systems are learning systems, and if they are to perform a task, one must train them. Current
software algorithms, such as those behind the deep learning revolution in Al are digitally simulated.
Instead, for energy-efficient computing training procedures are needed that adapt the hardware
physics directly, without the energy-costly detour through digital simulation [Ahm21].

The basis of biological learning processes is to adapt the strength of synaptic connections between
neurons. Much current work in neuromorphic computing focuses on memristors, which can be
directly used as adaptable electronic synapses. Different physical sorts of memristors display different
phenomena of adaptivity. Much work is spent on characterizing and harnessing them for synaptic
adaptation processes known from brains, in particular spike-timing dependent plasticity. Other
important strands of algorithm research concern re-formulations of the digital learning rules used in
deep learning to spiking analog neural networks, and methods to compute with large random neural
networks known as reservoir computing.
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Further developments in algorithms are to learn more from the brain — biological brains exploit a
multitude of dynamical-adaptive mechanisms, many of which remain to be discovered (collaboration
with neuroscientists). In addition, neuromorphic systems need to scale from single-effect
demonstrators to large, hierarchically organized multi-module architectures that can solve complex
tasks (collaboration with cognitive scientists and computer architecture engineers). Furthermore,
formal models of computing in self-organizing physical systems need to be developed for a
systematic engineering of hardware and software (collaboration with theoretical computer scientists
and mathematicians). These interdisciplinary efforts are supported by world-wide leading experts in
neuromorphic algorithms from RU, RUG and CWI.

Already today, digital neuromorphic hardware shows promising advantages in consumer hardware
such as smartphones and laptops, delivering a 2-3 times longer battery life. In these situations,
dedicated neuromorphic coprocessors are designed in digital hardware and combined with
conventional general-purpose processors. This hybrid scenario is generally expected for emerging
neuromorphic hardware. This makes the application development itself challenging, since niche
applications must be identified and benchmarked, with potentially many failures and hurdles for
integration with existing computational workflows. It will be key to develop an ecosystem in which
such testing cycles can be closed quickly such that a small set of most promising applications emerge
soon and can form the basis for a neuromorphic computing industry to scale up. Broadly speaking,
the most promising applications are expected for situations for which fast processing is needed (short
latency or high throughput) and for which the available energy budget is limited.

Examples of applications in various economic and public sectors:

+  Monitoring and anomaly detection of the electrical power grid relies on state-estimations of the
whole grid, which are based on computing-intensive calculations. Faster and more
energy-efficient state estimation will enable more effective control of the power grid. This is
increasingly important in view of the rapid grid expansion needed to realize sustainability goals.

+ Integration of neuromorphic hardware with drones enables literally on-the-fly image processing
and pattern recognition, with great security advantages (limited or no transfer of
privacy-sensitive data to external computers) and numerous potential applications: in the public
sector (searching for victims of natural disasters) in food production (inspecting plants) as well
as for maintenance planning in logistics (inspection of tanks, trains, airplanes).

« In healthcare, brain-computer interfacing, neuroprostheses, and implantable neuronal
interventions towards mitigating depression and epilepsy are foreseen [Qi23]. Using internal
signal processing that mimics information encoding in the brain helps to smoothen the
connection between brain signals and neurotechnologies as well as reduces power consumption
[Moh23].

- Monitoring of atomic-scale deviations occurring during chip manufacturing requires large-scale
computations. Neuromorphic technologies would enable to speed up this process and will make
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it possible to develop future technologies — up until closer integration of computers and human
brains. The latter is currently being commercialized by companies like Neuralink and
Phosphoenix.

« Large-scale research infrastructures rely critically on abundant and affordable compute
resources. For example, the Larger Hadron Collider and the European Low Frequency Array
(LOFAR) operate at data volumes of over 100,000,000 GB/year, while climate modeling features
even a factor 5-10 higher data volumes. Still many problems like large scale simulations of
guantum materials are not even feasible with the existing infrastructures. Collaborative research
by RU, UT, SURF and IBM, as well as in collaboration with Astron, indicate that neuromorphic
computing can reach 1000 times lower energy consumption and over 10 times faster calculations
[Kos23].

Example: Optical neuromorphic computing

Many applications such as Internet of Things (loT), autonomous driving and zero-energy sensors
require super-GHz bandwidth, low latencies and a small energy-footprint. Optical neuromorphic
computing transfers its well-known high-bandwidth and low-energy interconnect credentials to the
field of neuromorphic computing [Sha21,Xu21,McM23]. The negligible energy overhead for moving
data encoded in light within photonic processors enables unprecedented energy-efficient parallel
computation [Bai23,Men23], while wave diffraction and light scattering inherently realize fully
connected and recurrent neural networks [Wet20,Hu24].

Metaphotonic structures can perform dedicated mathematical operations on data encoded as
images in 2D wavefronts. Nanostructured diffractive surfaces perform analog processing with light,
such as Fourier transforms, convolutions, spatial differentiation and integral equation solving
[Hu24,Cor19, Cor23], scenarios exploited at AMOLF. High performance photonic chip technologies
[Bog20,Smi14] are also investigated with great success at TU/e. Deep neural network models are
mapped on photonic integrated chips for ultra-low latency parallel computation [Shi22,Shi23], while
ultra-low energy consumption is targeted by exploiting brain-inspired approaches based on spiking
laser networks on chip [Put23a,Put23b] and on electro-optical spiking nodes using resonant
tunneling diodes [Hej23, Zha23].

Fundamental limits, bounded by reciprocity, linearity and passivity, result in a reduced range of
operations executable in diffractive "through chip’wave-based computing. Reconfigurability, tailored
optical nonlinearities and gain are crucial for complex nonlinear analog computations and
diffraction-based neural networks. When mapping optical computing engines on-chip, built-up
losses limit scalability, while the accumulated noise and signal degradation reduce the overall system
resolution. For both approaches, efficiency and accuracy are key challenges for cascadable operation.
Schemes of heterogeneous material integration will enable next generation neuromorphic
photonics, supported by TU/e, AMOLF and IMEC.

13.



Appendix 2: Neuromorphic experts in the Netherlands

X X

Amolf Femius Koenderink

Astron

AxeleraAl

Centrum Wiskunde & Informatica
Hoursec

Innatera

Radboud Universiteit

Rijksuniversiteit Groningen

Technische Universiteit Delft

Technische Universiteit Eindhoven

Universiteit Twente

Universiteit Utrecht

Marc Serra Garcia
Martin van Hecke
Nachi Stern

Said Rodriguez
Chris Broekema
Bram Verhoef
Sander Bohte
Alexandra Pinto
Amir Zjajo

Alex Khajetoorians
Andrey Bagrov
Bert Kappen
Johan Kwisthout
Johan Mentink
Mahyar Shahsavari
Marcel van Gerven
Paul Tiesinga
Peter Korevaar
Theo Rasing

Ton Coolen
Wilhelm Huck
André van Schaik
Bart Besselink
Bart Kooi

Beatriz Noheda
Dirk Pleiter
Elisabetta Chicca
Erika Covi

Farhad Merchant
Herbert Jaeger
Maria Loi
Matthew Cook
Niels Taatgen
Tamalika Banerjee

Anteneh Gebregiorgis

Charlotte Frenkel
Christos Strydis
Georgi Gaydadjiev
Guido de Croon
Heba Abunahla
Moritz Fieback
Mottagiallah Taouil
Rajendra Bishnoi
Said Hamdioui
Wouter Serdijn
Aida Todri-Sanial
Andrew Nelson
Eugenio Cantatore
Federico Corradi
Henk Corporaal
Manil Dev Gomony
Marco Fattori
Martijn Heck

Patty Stabile
Sander Stuijk
Victor Calzadilla
Weiming Yao

Yoeri van der Burgt
Amir Yousefzadeh
Christian Nijhuis
Hans Hilgenkamp
Sander Smink
Wilfred van der Wiel
Marjolein Dijkstra
René van Roij
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